Wednesday

Seminar December 22nd

We will have a double session this week:


Monday December 22nd, 13:00, CRM Small Room


Speaker: Ilya Kazatchkov, McGill University

Title: Equivalence of right-angled Coxeter groups and graph products of finite abelian groups


Second talk, 13:30

Speaker:
Montse Casals, McGill University

Title:
On systems of equations over partially commutative groups

Seminar December 1st

Monday December 1st, 13:00, CRM Small Room

Speaker: Enric Ventura, UPC

Title: Unsolvability of the conjugacy and the isomorphism problems for Z^n-by-free groups

Thursday

Seminar November 3rd

Monday November 3rd, 13:00, CRM Small Room

Speaker: Lluís Bacardit, UAB

Title: Generadors of Punctured Mapping Class Groups

Abstract: És un resultat clàssic que el mapping-class group d'una superficie orientable sense vora és isomorf a un subgrup de Out(F), on F és un grup lliure. Si la superficie té vora, llavors el mapping-class group de la superficie és isomorf a un subgrup de Aut(F). Utilitzant aquest resultat clàssic, J. McCool va ser el primer en demostrar que el mapping-class group d'una superficie orientable es finitament presentat. Posteriorment, McCool va donar generadors explicits del mapping-class group de superficies orientable amb una vora i sense punts. L'argument de McCool és purament algebraic i utilitza la teoria de Whitehead sobre automorfismes de grups lliures. Nosaltres generalitzem el resultat de McCool a superficies orientable amb punts. A més, la nostra demostració no utilitza resultats de Whitehead.

Wednesday

Seminar October 27th

Monday, October 27th, 13:00, CRM Small Room

Speaker: Ferran Cedó, UAB

Title: Grups involutius de Yang-Baxter

Abstract:
Sigui $X$ un conjunt finit. Una aplicació $r\colon X\times X\rightarrow X\times X$ tal que $r^2=id$ es diu que és una solució involutiva conjuntista de l'equació de Yang-Baxter si compleix que $$r_{12}r_{23}r_{12}= r_{23}r_{12}r_{23},$$ on $r_{12}$ i $r_{23}$ són aplicacions de $X^3$ en ell mateix definides per $r_{12}(x,y,z)=(f_x(y),g_y(x),z)$ i $r_{23}(x,y,z)=(x,f_y(z),g_z(y))$, i $r(x,y)=(f_x(y),g_y(x))$. Observem que en aquest cas les aplicacions $f_x$ i $g_y$ són permutacions del conjunt $X$. Es diu que un grup finit $G$ és un grup involutiu de Yang-Baxter (que escriurem grup IYB) si és isomorf al subgrup $\langle f_x\mid x\in X\rangle$ de $Sym_X$ per a alguna solució involutiva conjuntista $r$ de l'equació de Yang-Baxter. El 1999, Etingof, Schedler i Soloviev van demostrar que tot group IYB és resoluble. Nosaltres conjecturem que tot grup finit resoluble és IYB. En aquesta xerrada parlaré dels resultats parcials que hem obtingut i que suporten aquesta conjectura.

Thursday

Seminar October 13th

Monday October 13th, 13:00, CRM Small Room

Speaker:
Enric Ventura, UPC

Title: Orbit undecidability and a recursive presentation for Mihailova's group

Monday

Seminar October 6th

We will have a double session this week.


Monday October 6th, 12:30, CRM Small room

Speaker: Sean Cleary, The City College of New York

Title: Rotation distances and generating sets for Thompson's group F

Abstract: Rotation distances measure differences in tree shape between binary trees, by counting a minimum number of rotations needed to transform a first given tree into another. These correspond to word metrics for Thompson's group F with respect to different generating sets, depending upon where rotations are allowed. These connections give useful results in both directions.


Second talk, 13:30

Speaker:
Laura Ciobanu, Université de Fribourg

Title:
Properties of generic subgroups of free and hyperbolic groups

Abstract: Let F be a finitely generated free group, and K be a finitely generated, infinite index subgroup of F. We show that generically many finitely generated subgroups H have trivial intersection with all conjugates of K, thus proving a stronger, generic form of the Hanna Neumann Conjecture. As an application, we show that the equalizer of two free group homomorphisms is generically trivial, which implies that the Post Correspondence Problem is generically solvable in free groups. Then let G be a word hyperbolic group. We show that generically, finitely generated subgroups of G are free and quasiconvex. This is joint work with Armando Martino and Enric Ventura.

Wednesday

Seminar September 29th

Monday September 29th, 13:00, CRM Small room

Speaker:
Francesco Matucci, CRM

Title: Centralizers in R. Thompson's groups

Abstract: R. Thompson's groups F, T and V are countable groups whose elements can be represented as homeomorphisms of a real interval, of the circle, and of the Cantor set, respectively. Elements of the groups can be represented both from a dynamical point of view and from a combinatorial one, using suitable types of diagrams. We give a classification of centralizers of elements in these groups.

We achieve this by using techniques derived from the available solutions of the conjugacy problem. Using the piecewise-linear perspective one can derive centralizers in F by observing the bumps of a map. This description can be "lifted" to centralizers in T, up to finite index. The case of V is treated using the point of view of tree diagrams and choosing a suitable representative that describes the action on the underlying Cantor set by looking at the diagram. We give combinatorial and topological applications of this description.

Seminar September 22nd

The first meeting of the Seminar in the year 2008/09.


Monday September 22nd, 13:00, CRM Small room

Speaker: Jonathan Hillman, University of Sydney

Title: Indecomposable PD3 Complexes

Abstract: $PD$-complexes model the homotopy theory of manifolds. In dimension 3, the unique factorization theorem holds in the sense that a $PD3$-complex is a connected sum if and only if its fundamental group is a free product, and the indecomposables are either aspherical or have virtually free fundamental group [Tura'ev, Crisp]. However in contrast to the 3-manifold case the group of an indecomposable may have infinitely many ends (i.e., not be virtually abelian). We shall sketch the construction of one such example, and outline some recent work using only elementary group theory that imposes strong restrictions on any other such examples.